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Fig. 1: CLothes mAnipulation with Semantic keyPoints (CLASP). The semantic keypoint representation enables CLASP to generalize over many different
types of clothes and tasks. (a) Semantic keypoints for various types of clothes. (b) Four distinct clothes manipulation tasks.

Abstract— Clothes manipulation, such as folding and flatten-
ing, is a critical skill for home service robots. Despite recent
advances, existing methods often focus narrowly on a specific
task or a specific type of clothes. This work introduces CLothes
mAnipulation with Semantic keyPoints (CLASP), which aims at
general-purpose clothes manipulation over diverse clothes types
and tasks. Our insight in tackling the challenge of generalization
is the semantic keypoints, a general spatial-semantic represen-
tation that encodes the structural features of clothes, such as
“left sleeve” and “right hem”. Semantic keypoints are salient
for both perception and action, effectively captured in the
commonsense knowledge of foundation models, and relatively
easy to extract from observations. CLASP integrates semantic
keypoints with foundation models to achieve general-purpose
clothes manipulation. In both simulation and real experiments,
CLASP demonstrates strong performance and generalization
capabilities.

I. INTRODUCTION

People have long anticipated that an intelligent home
service robot taking care of their laundry chores, like folding
a T-shirt for storage. Despite recent significant advances in
clothes manipulation [1], [2], these methods are tailored
to specific clothes types and tasks. How can we build a
robot for general-purpose clothes manipulation? Clothes are
deformable objects with a high-dimensional state space,
and different types of clothes exhibit distinct geometric
structures. This complexity makes it essential to develop a
general state representation.

In this paper, we present semantic keypoints as a general
spatial-semantic representation of clothes. Compared with
previous keypoint representations, semantic keypoints carry
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explicit semantic meaning and can be intuitively described
using natural language. As a result, semantic keypoints
offer a sparse representation and focus on distinct structural
features of clothes like sleeves and shoulders, salient for both
perception and action. For perception, semantic keypoints are
easy to extract and consistent across instances of the same
clothes type. For action, semantic keypoints identify where
clothes are frequently manipulated.

For general-purpose clothes manipulation (Fig 1), we
integrate semantic keypoints with foundation models and
develop a CLothes mAnipulation method with Semantic
keyPoints (CLASP). CLASP first leverages a vision lan-
guage model (VLM) and vision foundation models for
open-category semantic keypoint extraction. After extracting
semantic keypoints, the RGB image marked with semantic
keypoints and the language instruction are fed into a VLM
for task planning. The VLM determines task completion
status and generates a sequence of sub-tasks, each consisting
of a basic skill and associated contact points. Before execu-
tion, the sub-task plan is verified. After executing each sub-
task, CLASP updates its observation and decides whether to
replan. This loop will be repeated until the task is completed.

We conduct both simulation and real-world experiments to
evaluate CLASP. Simulations show that CLASP outperforms
baseline methods in success rate and generalization. Real-
world experiments on 15 various clothes show that CLASP
performs well across a wide variety of clothes and tasks.

II. RELATED WORK

Learning Deformable Object Manipulation. Although
learning methods have made significant progress in a wide
range of deformable object manipulation tasks [3]–[5], the
generalization remains a significant limitation. Most of the



Fig. 2: CLASP overview. Given an RGB-D observation, CLASP extracts semantic keypoints as the state. These keypoints, along with the RGB image and
task instruction, are fed to a VLM to generate a sub-task sequence. Once verified, the sub-tasks are executed. After each sub-task, CLASP updates the
observation and decides whether to replan. This loop will be repeated until the task is complete.

previous methods learn task-specific policies [6]–[8]. Al-
though some goal-conditioned methods aim at multi-task
learning [9], [10], they often struggle to generalize to unseen
goals. In this paper, we propose CLASP, a framework that
integrates semantic keypoint representations with foundation
models. CLASP enables generalization to a wide range of
clothes and manipulation tasks.
State representation of deformable objects. To repre-
sent deformable objects with high-dimensional state space,
physics-based representation [11]–[13], latent representa-
tion [14], [15], and keypoint representation [16]–[18] are
explored. Among them, Keypoint representation provides
a succinct way and enables efficient planning and learn-
ing [19]. In this paper, we present semantic keypoints as
a general spatial-semantic representation of clothes. Unlike
previous keypoint representations, semantic keypoints carry
semantic meaning and can be described in natural language,
making them sparse and salient for perception and action.

III. METHOD

In this paper, we introduce CLASP (CLothes mAnipu-
lation method with Semantic keyPoints), a general-purpose
clothes manipulation method. The core idea of CLASP is
to use semantic keypoints as a general state representation
for clothes. Each semantic keypoint includes a language
description (e.g., “left sleeve”) and a keypoint position.

To leverage semantic keypoints in clothes manipulation,
we first build a basic skill library. Instead of manually
designing skills, we prompt a large language model (LLM)
to discover basic clothes manipulation skills. The LLM’s
commonsense knowledge ensures these skills are general
and sufficient. We then implement the discovered skills as
policies parameterized by contact point positions, to form the
basic skill library. The basic skill library includes grasp,
moveto, release, rotate, and pull.

Fig. 2 illustrates the overall framework of CLASP. Given
RGB-D observations of clothes and language instruction,
CLASP generates sequential manipulation actions to com-
plete the task specified by the instruction. CLASP first
leverages foundation models for open-category semantic
keypoint extraction. Specifically, we propose a two-stage

pipeline for semantic keypoint extraction. The first stage
leverages a VLM for semantic understanding of clothes and
autonomously discovers semantic keypoints on a prototype
image for each clothes category. The second stage aims
to match semantic keypoints on the prototype image to
novel clothes, where vision foundation models ensure spatial
precision.

Given the observation image and extracted semantic key-
points, we prompt the VLM to decompose the free-form
natural language instruction into sequential subtasks. Each
subtask consists of a basic skill (from a predefined skill
library) and contact points (selected from semantic key-
points), such as grasp(“left sleeve”). CLASP then verifies
the plan’s executability: for each subtask, it invokes a policy
from a low-level skill library to generate waypoints based
on contact point positions and uses motion planning to
produce trajectories. If all subtasks are feasible, we execute
them sequentially. Otherwise, the failure reason is used
to prompt the VLM for replanning. After executing each
subtask, CLASP updates the observation and decides whether
to replan. This closed-loop pipeline repeats until the task is
completed, as determined by the VLM.

IV. EXPERIMENTS

A. Simulation Experiments

To evaluate CLASP, we conduct simulation experiments
in SoftGym [22]. The tasks include folding, flattening,
hanging, and placing. Baseline methods include two general
multi-task learning frameworks (CLIPORT [20] and Goal-
conditioned Transporter [9]) and two task-specific algorithms
(FlingBot [21] and FabricFlowNet [7]). To evaluate the
generalization, only half of the tasks are provided through
expert demonstrations or examples in the prompt. For each
task, we conduct 120 trials with different configurations to
calculate the success rate. The two task-specific baseline
methods are only evaluated on related tasks.

The experiment results are shown in TABLE I. Overall,
CLASP outperforms the two multi-task learning methods on
both seen and unseen tasks. The two multi-task learning
methods learn task-specific action sequences in an end-
to-end manner, and the learned action sequences are not



TABLE I: Simulation Experiment Results. The average success rates (%) on testing tasks. The best performance is in bold.

Method
Folding

(seen object)
Flattening

(seen object)
Hanging

(seen object)
Placing

(seen object)

Towel T-shirt T-shirt Skirt Trousers Towel Towel Skirt

CLIPORT [20] 77.5 80.0 32.5 36.7 76.7 83.3 93.3 93.3
Goal-conditioned Transporter [9] 83.3 76.7 26.7 33.3 100.0 80.0 66.7 83.3
FlingBot [21] N/A N/A 66.7 85.0 N/A N/A N/A N/A
FabricFlowNet [7] 93.7 100.0 N/A N/A N/A N/A N/A N/A
CLASP 100.0 95.0 65.0 80.0 96.7 97.5 96.7 96.7

Method
Folding

(unseen object)
Flattening

(unseen object)
Hanging

(unseen object)
Placing

(unseen object)

Trousers Skirt Trousers Towel T-shirt Skirt Trousers T-shirt

CLIPORT [20] 0.0 0.0 8.3 9.2 76.7 66.7 70.0 73.3
Goal-conditioned Transporter [9] 0.0 0.0 10.0 6.7 36.7 40.0 36.7 60.0
FlingBot [21] N/A N/A 29.2 34.2 N/A N/A N/A N/A
FabricFlowNet [7] 0.0 2.5 N/A N/A N/A N/A N/A N/A
CLASP 87.5 81.7 60.8 65.0 93.3 76.7 93.3 94.2

Fig. 3: Qualitative results of real-world experiments. From left to right, the figures display the task description, detected semantic keypoints, the real robot’s
execution process, and the final achieved state.

transferrable. In contrast, CLASP learns task-agnostic and
generalizable language and visual concepts. The common-
sense knowledge from VLM allows CLASP to handle un-
seen clothes manipulation tasks by decomposing them into
predefined basic skills. Furthermore, semantic keypoints are
task-agnostic and provide effective cues for task planning
and action generation in unseen clothes manipulation tasks.
Compared to the two task-specific algorithms, CLASP shows
comparable performance on seen clothes folding and flatten-
ing tasks, demonstrating the effectiveness of the proposed
method for clothes manipulation.

B. Real Experiments

In real-world experiments, we evaluate CLASP on 15
clothes (Fig. 1 (a)) across diverse types, sizes, shapes, and
materials. Each clothes item is evaluated across four tasks:
folding, flattening, hanging, and placing. ClASP achieves an
86% success rate in clothes folding, a 66% success rate in
clothes flattening, a 94% success rate in clothes hanging,

and a 92% success rate in clothes placing. The success rate
is comparable to existing task-specific clothes manipulation
algorithms while we test CLASP on broader clothes types
and instances. Fig. 3 illustrates some representative exam-
ples.

V. CONCLUSION

In this paper, we present semantic keypoints as a general
spatial-semantic representation of clothes. Building on this
representation, we propose CLothes mAnipulation with Se-
mantic keyPoints (CLASP). By integrating a general seman-
tic keypoint representation with the capabilities of foundation
models, CLASP provides a general-purpose solution for
clothes manipulation. Simulation experiments demonstrate
that CLASP outperforms baseline methods in terms of suc-
cess rate and generalization in clothes manipulation. Real-
world experiments further validate CLASP’s generalization
in clothes manipulation. CLASP can be directly applied to a
diverse range of clothes types and manipulation tasks.
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