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Fig. 1: PhysTwin takes sparse videos (three camera views) of deformable objects under interaction as input and reconstructs a simulatable
digital twin with complete geometry, high-fidelity appearance, and accurate physical parameters. This enables multiple applications, such as
real-time interactive simulation using keyboards and robotic teleoperation devices, as well as model-based robot planning.

Abstract—Creating a physical digital twin of a real-world
object has immense potential in robotics, content creation, and
XR. In this paper, we present PhysTwin, a novel framework
that uses sparse videos of dynamic objects under interaction to
produce a photo- and physically realistic, real-time interactive
virtual replica. Our approach centers on two key components:
(1) a physics-informed representation that combines spring-mass
models for realistic physical simulation, generative shape models
for geometry, and Gaussian splats for rendering; and (2) a novel
multi-stage, optimization-based inverse modeling framework that
reconstructs complete geometry, infers dense physical properties,
and replicates realistic appearance from videos. Our method
integrates an inverse physics framework with visual perception
cues, enabling high-fidelity reconstruction even from partial,
occluded, and limited viewpoints. PhysTwin supports modeling
various deformable objects, including ropes, stuffed animals,
cloth, and delivery packages. Experiments show that PhysT-
win outperforms competing methods in reconstruction, rendering,
future prediction, and simulation under novel interactions. We
further demonstrate its applications in interactive real-time
simulation and model-based robotic motion planning. Project
Page: https://jianghanxiao.github.io/phystwin-web/

I. INTRODUCTION

In this work, we aim to build an interactive PhysTwin from
sparse-viewpoint RGB-D video sequences Fig. 2, capturing
object geometry, non-rigid dynamic physics, and appearance
for realistic physical simulation and rendering. We model
deformable object dynamics with a spring-mass-based rep-
resentation, enabling efficient physical simulation and handling
a wide range of common objects, such as ropes, stuffed animals,
cloth, and delivery packages. To address the challenges posed
by sparse observations, we leverage shape priors and motion

estimation from advanced 3D generative models [6] and vision
foundation models [4, 2, 5] to estimate the topology, geometry,
and physical parameters of our physical representation. Since
some physical parameters (such as topology-related properties)
are non-differentiable and optimizing them efficiently is non-
trivial, we design a hierarchical sparse-to-dense optimization
strategy. This strategy integrates zero-order optimization [1]
for non-differentiable topology and sparse physical parameters
(e.g., collision parameters and homogeneous spring stiffness),
while employing first-order gradient-based optimization to
refine dense spring stiffness and further optimize collision
parameters. For appearance modeling, we adopt a Gaussian
blending strategy, initializing static Gaussians from sparse
observations in the first frame using shape priors and deforming
them with a linear blending algorithm to generate realistic
dynamic appearances.

Our inverse modeling framework effectively constructs
interactive PhysTwin from videos of objects under interaction.
We create a real-world deformable object interaction dataset
and evaluate our method on three key tasks: reconstruction
and resimulation, future prediction, and generalization to
unseen interactions. Both quantitative and qualitative results
demonstrate that our reconstructed PhysTwin aligns accurately
with real-world observations, achieves precise future predic-
tions, and generates realistic simulations under diverse unseen
interactions. Furthermore, the high computational efficiency of
our physics simulator enables real-time dynamics and rendering
of our constructed PhysTwin, facilitating multiple applications,
including real-time interactive simulation and model-based
robotic motion planning.



<latexit sha1_base64="ggB6U2di6KWSE9LXieRzAyxVonQ=">AAACInicbVDLSgNBEJz1bXxFPXoZDIIghF0RHwdBzMWjgjGBJITZSScOzmOZ6RXDkm/x4q948aCoJ8GPcRKDRGPBQFFVTU9XnEjhMAw/gonJqemZ2bn53MLi0vJKfnXtypnUcihzI42txsyBFBrKKFBCNbHAVCyhEt+U+n7lFqwTRl9iN4GGYh0t2oIz9FIzf1Six7TUrCPcYdYBowBtt0d3fjRl+sFRxYJuge0184WwGA5Ax0k0JAUyxHkz/1ZvGZ4q0Mglc64WhQk2MmZRcAm9XD11kDB+wzpQ81QzBa6RDU7s0S2vtGjbWP800oE6OpEx5VxXxT6pGF67v15f/M+rpdg+bGRCJymC5t+L2qmkaGi/L9oSFjjKrieMW+H/Svk1s4yjbzXnS4j+njxOrnaL0X5x/2KvcHI6rGOObJBNsk0ickBOyBk5J2XCyT15JM/kJXgInoLX4P07OhEMZ9bJLwSfX08FpDk=</latexit>

C = Cgeometry + Cmotion + Crender

Reconstruction

Observation

Tracking

GT ObservationPseudo Track

Simulation
Rendering

Optimization*

*Control Point

Topology Geometry

Gaussians

Contact

PhysTwin

<latexit sha1_base64="kvnpK4lZp9Z/I3K0EOxbh4N68Y8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4sSQi1WPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6xHHC/YgOlAgFo2ilBzz3eqWyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk+ZFxatWqveX5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gC9IY11</latexit>

t � 1
<latexit sha1_base64="QhaWXmnGoOlgmZu6DZZxvnONEzE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpl272YTdiVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94CThfkSHSoSCUbRSA/ulsltx5yCrxMtJGXLU+6Wv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/ND52Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjjZ0IlKXLFFovCVBKMyexrMhCaM5QTSyjTwt5K2IhqytBmU7QheMsvr5LWZcWrVqqNq3LtNo+jAKdwBhfgwTXU4B7q0AQGHJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A47uNAw==</latexit>

t
<latexit sha1_base64="seHr22W9wgx4F2HIx+USZQdIUf0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSIIQklEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqd+64lrI2L1iOOE+xEdKBEKRtFKD3ju9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs2LiletVO8vy7WbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AG6F41z</latexit>

t + 1… …

Stiffness

Simulated Geometry and Motion Gaussian Rendering
Fig. 2: Overview of Our PhysTwin Framework. We present an overview of our PhysTwin framework, where the core representation
includes geometry, topology, physical parameters (associated with springs and contacts), and Gaussian kernels. To optimize PhysTwin, we
minimize the rendering loss and the discrepancy between simulated and observed geometry/motion. The rendering loss optimizes the Gaussian
kernels, while the geometry and motion losses refine the overall geometry, topology, and physical parameters in PhysTwin.

II. EXPERIMENTS

In this section, we evaluate the performance of our PhysTwin
framework across three distinct tasks involving different types
of objects. Our primary objective is to address the following
three questions: (1) How accurately does our framework
reconstruct and resimulate deformable objects and predict their
future states? (2) How well does the constructed PhysTwin
generalize to unseen interactions? (3) What is the utility of
PhysTwin in downstream tasks?

A. Experiment Settings

Tasks. To assess the effectiveness of our PhysTwin frame-
work and the quality of our constructed PhysTwin, we formulate
three tasks: (1) Reconstruction & Resimulation; (2) Future
Prediction; and (3) Generalization to Unseen Actions.

For the Reconstruction & Resimulation task, the objective is
to construct PhysTwin such that it can accurately reconstruct
and resimulate the motion of deformable objects given the
actions represented by the control point positions.

For the Future Prediction task, we aim to assess whether
PhysTwin can perform well on unseen future frames during
its construction.

For the Generalization to Unseen Interactions task, the goal is
to assess whether PhysTwin can adapt to different interactions.
To evaluate this, we construct a generalization dataset consisting
of interaction pairs performed on the same object but with
varying motions, including differences in hand configuration
and interaction type.

B. Results

To assess the performance of our framework and the quality
of our constructed PhysTwin, we compare with two augmented
baselines across three task settings. Our quantitative analysis
reveals that the PhysTwin framework consistently outperforms
the baselines across various tasks.

Reconstruction & Resimulation. The quantitative results
in ?? Reconstruction & Resimulation column demonstrate the
superior performance of our PhysTwin method over baselines.
Our approach significantly improves all evaluated metrics,
including Chamfer Distance, tracking error, and 2D IoU,
confirming that our reconstruction and resimulation align more
closely with the original observations. This highlights the
effectiveness of our model in learning a more accurate dynamics
model under sparse observations. Additionally, rendering
metrics show that our method produces more realistic 2D
images, benefiting from the Gaussian blending strategy and
enhanced dynamic modeling. Fig. 3 further provides qualitative
visualizations across different objects, illustrating precise
alignment with original observations. Notably, our physics-
based representation inherently improves point tracking. After
physics-constrained optimization, our tracking surpasses the
original CoTracker3 [2] predictions used for training, achieving
better alignment after global optimization (See supplement for
more details).

Future Prediction. ??, in the Future Prediction column,
demonstrates that our method achieves superior performance in
predicting unseen frames, excelling in both dynamics alignment
and rendering quality. Fig. 3 further provides qualitative results,
illustrating the accuracy of our predictions on unseen frames.

Generalization to Unseen Interactions. We also evaluate
the generalization performance to unseen interactions. Our
dataset includes transfers from one interaction (e.g., single
lift) to significantly different interactions (e.g., double stretch).
We directly use our constructed PhysTwin and leverage our
registration pipeline to align it with the first frame of the
target case. Fig. 4 shows that our method closely matches the
ground truth observations in terms of dynamics. Quantitative
results further demonstrate the robustness of our method
across different actions. In contrast, the neural dynamics
model struggles to adapt to environmental changes and diverse



Fig. 3: Qualitative Results on Reconstruction & Resimulation and Future Prediction. We visualize the rendering results of different
methods on two tasks. For the reconstruction & resimulation task, our method achieves a better match with the observations. For the future
prediction task, our method accurately predicts the future state of the objects. In contrast, the baselines fail in most cases: GS-Dynamics [7]
tends to remain static, while Spring-Gauss [8] frequently causes the physical model to crash.
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Fig. 4: Qualitative Results on Generalization to Unseen Interactions. We visualize the simulation of a deformable object under unseen
interactions using our method and GS-Dynamics [7]. The leftmost image shows the interaction used to train the dynamics models, while the
images on the right demonstrate their generalization to unseen interactions. Our PhysTwin significantly outperforms prior work.

interactions as effectively as our approach. Moreover, in
unseen interaction scenarios, our method achieves performance
comparable to that on the future prediction task, highlighting
the robustness and generalization capability of our constructed
PhysTwin.

C. Application

The efficient forward simulation capabilities of our Spring-
Mass simulator, implemented using Warp [3], enable a variety
of downstream applications. ?? showcases key applications
enabled by our PhysTwin: (1) Interactive Simulation: Users can

interact with objects in real time using keyboard controls, either
with one or both hands. The system also supports real-time
simulation of an object’s future state during human teleopera-
tion with robotic arms. This feature serves as a valuable tool
for predicting object dynamics during manipulation. (2) Model-
Based Robotic Planning: Owing to the high fidelity of our
constructed PhysTwin, it can be used as a dynamic model in
planning pipelines. By integrating it with model-based planning
techniques, we can generate effective motion plans for robots
to complete a variety of tasks.
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