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Abstract—Elastic rods are key functional elements in continuum
robots, but also represent elastic objects to be manipulated by
robotic manipulators. Such objects are modeled as Cosserat-
Reissner rods, and more frequently as Kirchhoff rods exhibiting
large deformations but linear material constitutive relations, re-
garded as deformable linear objects (DLO). Control of continuum
robots and robotic manipulation planning rest on a realistic mod-
eling and representation of the shape of a rod from the limited
information available. In this note, a computationally efficient
and robust algorithm is described that admits to determine a
closed form analytic description of the shape of a Kirchhoff rod
solely from the knowledge of the orientation and position of its
terminal ends. The latter is available from the pose of the robot
end-effector in case of robotic manipulation of DLO. The shape
is represented as a curve in SE (3).

Index Terms—Continuum robot, deformable linearly object,
Cosserat, Kirchhoff, manipulation, forward kinematics, SE(3)

I. PROBLEM STATEMENT

For navigation of continuum robots, as well as for manipula-
tion planning in context of robotic handling of deformable
linear objects (DLO), specifically elastic slender rods, in
confined spaces, it is crucial to deduce a reliable estimate of
the DLO shape from the relative pose of the terminal ends
(or intermediate frames in case of multi-segment continuum
robots). This leads to a continuum forward kinematics (CFK)
problem: Given the end-effector (EE) pose of two robots,
H0,H1 ∈ SE (3), i.e. the configuration of the DLO’s terminal
ends, find the curve γ : [0, 1] → SE (3) representing the shape
of the DLO. Ideally the curve is given in closed form.

II. PRIOR WORK

Elastic rods are modeled with the well established Cosserat
theory [1] to capture the spatial deformation of DLO. Its
application to the manipulation of DLO and continuum (serial
and parallel) robots was put forth in [2], [3], [4]. It is
particularly relevant for modeling continuum robots with tubes
[5], [6] and soft structures consisting of multiple segments
[7]. In many applications, When handling DLO in particular,
but in many other situations, shear and compression of the
elastic elements are negligible. Restricting the Cosserat model
accordingly leads a Kirchhoff rod. The latter were used in [8],
for example, to model planar parallel continuum robots and
to solve the forward kinematics problem. Kirchhoff rods are
deemed more relevant for a majority of applications.
The principal challenge when using Cosserat or Kirchhoff rod
theory is the numerical solution of the corresponding boundary
value problem [9], [10]. In case of DLO the CFK problem,
as stated above, requires solving the governing differential
equations for given position and orientation of the terminal
ends of a rod. A collocation method is applied in [11] to solve
the boundary value problem for Kirchhoff rod. It should be
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mentioned that also discrete lumped parameter models [12],
[13], and closed form solutions of the Euler rod equations
for planar deformations [14] were used to enable dual-arm
manipulation and shape control.

III. KINEMATICS OF KIRCHHOFF ROD

A. Geometrically Exact Representation
A Kirchhoff rod (KR) is derived from a Cosserat-Reissner
rod (CR) by restricting its deformations to spatial bending ad
torsion. A CR is a curve in SE (3) that describes the displace-
ment of a frame Fτ (located at the rod’s center line, which is
aligned with its x-axis) attached at the cross section relative to
a frame F0 attached at the start of the rod. This relative frame
motions is represented by H (τ) =

[
R(τ) r(τ)
0 1

]
∈ SE (3),

with normalized parameter τ ∈ [0, 1]. At the terminal end,
frame F1 is attached. The cross section displacement at start
and end of the rod are H0 := H (0) and H1 := H (1),
and the relative configuration of the start and terminal ends
is H01 = H−1

0 H1 =
[
R01 r01
0 1

]
. The deformation screw,

represented in Fτ , is described by χ = [ κρ ] ∈ R6, where
κ1 is the torsion, κ2, κ3 the two bending curvatures, ρ1 is
the compression, and ρ2, ρ3 are the shear components. The
deformation satisfies the Poisson-Darboux equation

χ̂ = H−1H′ ∈ se (3) (1)

or written separately, κ̃ = RTR′ ∈ so (3) and ρ = RT r′.
The strain measure is defined as χ (τ) − χ̄ (τ). Here, χ̄
describes the undeformed rod geometry. If the undeformed
rod is straight, then χ̄ =

[
0
e1

]
, with e1 = [1 0 0]

T . The dis-
placement field, as solution of (1), is expressed with canonical
coordinates X (τ) =

[
x(τ)
y(τ)

]
∈ R6 as H (τ) = H0 expX (τ),

with exponential map on SE (3) [15], [16].
A KR does not exhibit shear or compression. With its center
line aligned with the x-axis of the cross section frame, for an
initially undeformed straight rod, ρ = e1. Equations (1) yield

x′ (τ) = dexp−1
−x(τ)κ (τ) (2)

r′ (τ) = expx (τ) e1 (3)

where dexp−x is the matrix form of the right-trivialized
differential on SO (3) [16]. While the displacement field of
a CR is a curve in SE (3), the displacements of a KR, i.e.
solutions of (2) and (3), evolve on a SE (3) submanifold,
defined by the constraint ρ = e1.

B. Analytic Reduced-Order Kinematics
Solutions of (2) describe the angular displacement when the
deformation field κ (τ) is given. It was shown [17], [18]
that a 3rd-order approximation of the solution curve between
initial R0 ∈ SO (3) and terminal orientation R1 ∈ SO (3) is
R (τ) = R0 expx

[3] (τ), with

x[3] (τ) =
(
3τ2 − 2τ3

)
x̄+ τ (τ − 1)

2
κ0 (4)

+
(
τ3 − τ2

)
dexp−1

−x̄κ1
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where x̄ := log(R01) ∈ so (3) is the Rodrigues vector
defining the relative rotation R01 = RT

0 R1, and κ0 := κ (0),
κ1 := κ (1) are boundary values.
A Gauß-Legendre quadrature of order s is used to compute
the translation displacement from the orientation field as

r[3] (τ) =
τ

2

s∑
i=1

αi expx
[3] (τ̄i)) e1. (5)

The evaluation points τ̄i :=
1
2 (1+τi)τ are computed from the

Gauß points τi, and Legendre weights αi.

IV. STATIC EQUILIBRIA OF KIRCHHOFF ROD

Assuming linear elastic Hookean material, the cross sec-
tion stiffness matrix Kκ = diag (GJx, EIyy, EIzz) is in-
troduced (Young’s modulus E, shear stiffness G, cross
section area A, second area moments Ixx, Izz , polar mo-
ment Jx). Then the stress is Kκ(κ − κ̄), and the elas-
tic potential related to the cross section is V̄κ (κ (τ)) =
1
2 (κ (τ)− κ̄ (τ))

T
Kκ (τ) (κ (τ)− κ̄ (τ)). The overall elastic

potential due to bending and torsion is Vκ =
∫ 1

0
V̄κ (κ (τ)) dτ .

In the absence of external distributed loads, the angular de-
formation field κ (τ) of a KR in static equilibrium (stationary
elastic potential) is the solution of the ODE system

Kκ (κ
′ − κ̄′) +K′

κ (κ− κ̄) + κ̃Kκ (κ− κ̄) + ẽ1f = 0 (6)

where κ̃ ∈ so (3) is the skew symmetric matrix associated
to vector κ ∈ R3, and f is the constraint force due to the
geometric condition ρ = e1. The solution depends on the
initial/boundary values for κ and on the constraint force f .

V. APPROXIMATE QUASISTATIC FORWARD KINEMATICS

A. Restating the Problem
The quasistatic CFK problem can now be restated: Given ini-
tial and terminal orientation and position, R0, r0 and R1, r1,
find κ (τ), and the corresponding displacement field such that
the elastic potential is minimized. To this end, the potential
could be evaluated with the approximate solution (4) and
minimized numerically. This computationally simple method
yields an analytic expression for the approximate KR shape.
The 3rd-order approximation gives rise to yet more efficient
method, assuming the elastic potential is minimized if the
boundary strains are minimized in a static equilibrium. This
assumption is valid for small curvature variations.
The boundary deformations are summarized in the vector
k := [κ0 κ1] ∈ R6. Denote with ||k||2Kk

= kTKkk the
Kk-weighted norm of k, where Kk :=

[
Kκ 0
0 Kκ

]
. The elastic

potential associated to the boundary deformations is 1
2 ||k||

2
Kk

,
where κ̄ = 0 is assumed (straight undeformed rod). With the
above assumption, the problem reduces to find κ0,κ1 that
minimize |k||2Kk

, and using the 3rd-order approximation (4),
yields a curve satisfies the geometric terminal conditions. The
terminal conditions on the orientation, R0,R1, are satisfied
by definition of (4). However, the terminal position r1 must
be imposed as a constraint. The corresponding geometric
constraints is g (k) = 0, with

g (k) := r[3] (1)− r01 (7)

and the terminal position r[3] (1) evaluated with (5).

B. Iterative Solution Algorithm
The constraint equations (7) are linearized at a general k∗ as

g (k∗) + J (k∗) dk = 0 (8)

where J (k) :=
[
∂g(k)
∂κ0

∂g(k)
∂κ1

]
is the 3 × 6 constraint

Jacobian. The unique solution minimizing the norm ∥dk∥2Kk
of

the change in boundary deformations is dk = −J+
Kk

(k)g(k),
where J+

Kk
= K−1

k JT
(
JK−1

k JT
)−1

is the Kk-weighted
pseudoinverse of J. This gives rise to the following Newton-
Raphson iteration scheme (the iteration step is indicated by
the superscript i in ki):

CFK Newton-Raphson Algorithm for Kirchhoff Rods:

Input: x̄ = logR01 (relative rotation of terminal frames)
r01 (relative translation of terminal frames)

Initialization: k0 := 0, i := 1

Do ki := −J+
Kk

(ki−1)g(ki−1)

ki := ki−1 +∆ki

i := i+ 1

While
∥∥∆ki

∥∥ ≤ ε1 ∨
∥∥g (

ki
)∥∥ ≤ ε2

The algorithm terminates when the geometric constraints are
satisfied with accuracy ε2 or when the change in k is less
then specified by ε1. The initial value k0 = 0 ensures
minimization of the total elastic potential. Another minimum
norm solution can be used as start value if available. Due to
the use of the 3rd-order approximation, this iteration scheme
shows very good robustness and efficiency. It is remarked
that the constraint Jacobian can be expressed in closed form
making use of analytic relations of the exponential map and
derivatives [16].

VI. EXAMPLES

The shape reconstruction of a clamped fiberglass rod is
used as example. In its undeformed configuration, the rod
is straight. The rod has a length L = 0.6m, and a constant
circular cross section with 2 mm diameter. The elastic material
parameters are taken from the manufacturer datasheet. The
Young’s modulus is E = 35GPa, and the shear modulus
is G = 3GPa. To validate the results, the kinetostatic
equations (6) and the kinematic equations (2) and (3) are
solved numerically for given terminal poses to yield reference
solutions for x (τ) and r (τ). To assess the accuracy of the
shape reconstruction, the difference of position obtained with
the approximation from the reference solution is measured
with εr (τ) := ||r (τ) − r[3] (τ) ||. The deviation from the
reference orientation is measured with εx (τ) := ||x (τ) −
x[3] (τ) || ≈ || log(exp (−x (τ)) expx[3] (τ))||. The thresholds
in the algorithm are set to ε1 = 10−3 and ε2 = 10−5.
To demonstrate the method, various relative terminal displace-
ments H01 of the rod’s two terminal frames F0 and F1 are
prescribed. The results for six different terminal displacements
are shown in 1. The numerically exact reference solutions are
shown in gray, and the shape reconstructed with proposed
algorithm is shown in orange. To quantify the approximation
accuracy, the orientation error εr (τ) and position εr (τ) along
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Fig. 1. Shape of the fiberglass element computed with the proposed approx-
imation algorithm for six relative poses of terminal frames F0 and F1. The
numerically exact solution of the Kirchhoff rod model is shown in gray, the
approximation is shown in orange.

the rod are shown in Fig. 2. The convergence of the geometric
constraint is shown in Fig. 3. This figure also indicated
the number of iterations needed to converge. Fig. 4 shows
experimental results for a planar displacement of the terminal
ends. The scene was captured with an Intel RealSense D405
camera, and only the 2D-image was used to identify the rod.
To improve visibility, the rod was painted with black ink.
The central line of the rod was identified with the nearest
neighbor algorithm applied to the BW-image. The numerically
exact solution of the boundary value problem well fits the
approximation computed with the algorithm. Both are in good
correspondence with the physical rod. The difference is caused
by the parameter uncertainties and the uncertainty of the
fixation, which was done manually.

VII. CONCLUSION AND OUTLOOK

Real-time shape reconstruction is crucial for handling and
reconfiguration planning of DLO as well as for control of
continuum robots. While the modeling using Cosserat and
Kirchhoff theory is well established, the efficient solution
of the governing boundary value problem remains a key
challenge. In this note a computationally efficient algorithm
for solving the continuum forward kinematics (CFK) problem
of clamped DLO modeled as Kirchhoff rods is introduced.
The algorithm yields an explicitly analytic description of the
displacement field as a 3rd-order approximation of the exact
solution. The accuracy can be improved using 4th-order in-
terpolations as reported in [17], [18]. Another straightforward
approach to increase accuracy and to accommodate Accuracy
improvements can also be achieved, in particular for very
large deformations, by introducing a multi-segment formu-
lation, which allows for varying cross sections and material
parameters. Due to its simplicity, the presented method can be
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Fig. 2. Approximation errors εx and εr of the approximations computed with
the introduced algorithm for displacements 1) . . . 6) accourding to Fig. 1.
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Fig. 3. Evolution of the constraint violation during the iteration process. This
also indicates the number of necessary iteration steps.
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Fig. 4. a) Real experiment with rod identified. b) Superposition of real rod
deformation, numerically exact solution, and approximation.

used to provide training data for training of neural networks
for shape reconstruction [19], [20].
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