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Abstract— Surgical automation can improve the consistency
and accessibility of life-saving procedures. Most surgeries re-
quire separating layers of tissue to access the surgical site, and
suturing to re-attach incisions. These tasks involve deformable
manipulation to safely identify and alter tissue attachment
(boundary) topology. Due to poor visual acuity and frequent
occlusions, surgeons tend to carefully manipulate the tissue in
ways that enable inference of the tissue’s attachment points
without causing unsafe tearing. In a similar fashion, we propose
JIGGLE, a framework for estimation and interactive sens-
ing of unknown boundary parameters in deformable surgical
environments. This framework has two key components: (1)
a probabilistic estimation to identify the current attachment
points, achieved by integrating a differentiable soft-body sim-
ulator with an extended Kalman filter (EKF), and (2) an
optimization-based active control pipeline that generates actions
to maximize information gain of the tissue attachments, while
simultaneously minimizing safety costs. The robustness of our
estimation approach is demonstrated through experiments with
real animal tissue, where we infer sutured attachment points
using stereo endoscope observations. We also demonstrate the
capabilities of our method in handling complex topological
changes such as cutting and suturing.

I. INTRODUCTION

Surgical automation has the potential to improve the acces-
sibility of life-saving procedures in under-served communi-
ties. In recent years, the robotics community has made strides
in surgical automation with the development of dVRK [1],
works like STAR [2], and advancements in the automation
of deformable manipulation [3], [4], [5], suturing [6], [7],
blood suction [8], cutting [9] and dissection [10].

Deformable manipulation is a significant component of all
surgical tasks. Large portions of surgical procedures involve
safely cutting tissue to detach regions and access the surgical
site, as well as suturing tissue back together. These actions
actively change the structure of the surgical scene. A key
step towards realizing surgical autonomy is enabling robots
to understand and track these changing structures. Many
previous works have aimed to take this step solely through
3D scene reconstruction [11], [12], [13], [14]. However, these
works are insufficient to enable safe interaction as they fail to
estimate and track the change in underlying tissue structures
and provide an understanding of how aggressively the tissue
is being manipulated. The key to enabling safer surgical
autonomy is an interactive approach to track and control
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Fig. 1. JIGGLE conducts probabilistic estimation of soft tissue attachment
points from image data and manipulation of the tissue. The estimated
boundary, i.e. the suture locations, are shown in purple. A corresponding
confidence metric is shown in blue.

the tissue. Previous approaches like [15] that consider the
joint problem of estimation and active sensing are limited
in the resolution of the attachment regions they can detect.
Safety is not considered, and behaviors are limited to hand-
tuned motion primitives.Additionally, previous works do not
show their results on real tissue data and fail to consider
topological changes like cutting and suturing.

In this work, our goal is to realize an interactive approach
to estimating, manipulation, and tracking of a deformable
thin-shell tissue for safer, more intelligent tissue control.
Specifically, we propose the Joint Interactive Guided Gaus-
sian Likelihood Estimation (JIGGLE) method: a novel ac-
tive sensing framework for estimating boundary attachment
points in deformable surgical environments. We leverage
a differentiable physics simulator to develop an efficient
probabilistic estimation framework for deformable environ-
ments with a high degree of freedom (DOF). Our estimation
framework relies solely on stereo camera observations which
is typically the only available feedback modality during
surgery. We demonstrate the robustness of this estimation in
real tissue manipulation experiments, as shown in Fig. 1. We
take advantage of the probabilistic nature of the estimation
framework to build an active sensing pipeline that selects
actions to maximize information gain while minimizing a
safety cost to avoid tissue tearing. We showcase the complete



JIGGLE framework in simulations involving topological
changes like cutting and suturing.

II. METHODS

Problem Statement: In this paper we consider a de-
formable thin shell tissue T represented by a mesh with n
particles with positions xt = [x1

t . . .x
n
t ] ∈ Rn×3 at time t.

A subset of the tissue Tb ⊆ T is attached to the environment
by boundary constraints of varying strength parameterized
by bt = [b1

n . . .b
n
t ] ∈ Rn×1. The tissue is controlled by

moving a fixed point on the tissue with actions ut ∈ R3. Our
goal for the estimation task is to estimate the true boundary
constraints b∗ given observations of a real reference tissue
Tref. For active sensing, we aim to maximize information
gain and find the best actions to estimate b∗.

Estimation: To solve the above problem statement we rep-
resent Extended Position-based Dynamics (XPBD) [16].
We control the tissue with actions ut that specify the position
of an infinite-mass virtual control particle that is connected
to a local neighborhood of points on the tissue mesh. We
formulate our boundary constraints as zero resting length
spring attachments between each tissue particle and infinite-
mass virtual particles that are fixed to the tissue particle’s
initial resting positions x0 = [x1

0 . . .x
n
0 ].

We propose a probabilistic estimation framework to track
boundary constraint distributions, bt, over the true boundary
parameters. The differentiability of the XPBD simulation
allows us to locally linearize the tissue model. This in
conjunction with a multivariate Gaussian representation of
bt ∼ N (b̂t,Σt) allows us to easily track bt with an extended
Kalman Filter (EKF) formulation. The motion model of
our EKF describes the change in the boundary estimate bt

between the time steps. We use δbt ∈ Rn to represent
topology-changing actions, such as suturing or cutting, that
directly modify the boundary parameters.

bt+1 = m(bt, δbt, wt) = bt + δbt + wt

wt ∼ N (0,Wt)
(1)

During topology changing actions δbt is non-zero with Wt

having larger covariance values near the modified regions.
As the boundary parameters are not directly visible, we

observe them indirectly through the tissue xref
t :

xt+1 = h(bt+1,x
ref
t , ut, vt) = f(xref

t , ut,bt+1) + vt+1

vt+1 ∼ N (0, Vt+1)
(2)

Here, we initialize the XPBD simulation, f , with the last
observed tissue state, xref

t , and forward simulate with the
belief the boundary constraints from the motion model.

Using equations 1 and 2 we can track the changes to the
boundary parameter belief, represented by b̂t and Σt.

Prediction :

b̂t+1|t = b̂t|t + δbt, Σt+1|t = Σt|t +Wt (3)

Update :

b̂t+1|t+1 = b̂t+1|t +Kt+1ỹt+1

Σt+1|t+1 = (I −Kt+1Jt+1)Σt+1|t
(4)

TABLE I
COMPARISON OF BOUNDARY ESTIMATION ACCURACY AFTER 4 GRASP

SEQUENCES. RESULTS DEMONSTRATE OUR METHOD OUTPERFORMS THE

BASELINE ADAM OPTIMIZER.

PCD ➡ PUG ➡

Cases Adam Ours Adam Ours

Arc 82.1 100 59.3 87.1
Line 85.7 100 40.0 43.3
Line-dot 68.0 96.0 34.7 48.9
Arc-line 83.8 97.3 51.8 65.5
U-shape 87.3 97.5 52.9 76.0

where the observation residual ỹt+1, and the Kalman gain
Kt+1 are given by:

ỹt+1 = xref
t+1 − h(b̂t+1|t,x

ref
t , ut, vt)

Kt+1 = Σt+1|tJ
⊤
t+1S

−1
t+1

(5)

with the residual covariance St+1, the observation Jacobians
Jt+1, and covariance Jacobians Rt+1 as:

St+1 = Jt+1Σt+1|tJ
⊤
t+1 +Rt+1Vt+1R

⊤
t+1

Rt+1 =
∂h

∂v

∣∣∣∣
b̂t+1|t

= I

Jt+1 =
∂h

∂b

∣∣∣∣
b̂t+1|t

=
∂f(xref

t , ut,bt+1)

∂b

∣∣∣∣
b̂t+1|t

(6)

Here, f(xref
t , b̂t+1|t, ut) outputs the expected tissue surface

after using the XPBD simulator to forward simulate one
timestep with action ut, using the mean of the current esti-
mated boundary belief, b̂t+1|t. To enhance the robustness of
our estimation, we modify the EKF to use k uniform samples
of previous observations up until the last topology changing
action. We use the multiple shooting method to encode
previous observations [17]; this approach samples from pre-
viously observed trajectories, forward simulates from those
samples using the current belief and penalizes the deviation
of predicted particle states from the reference observations.
To get accurate observations of the tissue state, xref

t , for real
world experiments, we introduce an observation-matching
condition into the XPBD simulation’s iterative constraint
solving procedure, similar to [18]. As this condition uses the
current boundary constraint estimate, bt, we combine the
EKF update and state estimation into one joint estimation
problem where both are iteratively estimated.

Active Sensing: For the active sensing problem, we
want to solve for actions that minimize the entropy of the
boundary constraint belief distribution, bt, while minimizing
the boundary energy to prevent the tissue from experiencing
unsafe forces. In place of the computationally complex
entropy minimization objective we introduce a heuristic to
maximize D: Uncertainty-Weighted Displacement (UWD).

D(xref
t , ut, b̂t) =

∥∥∥∆̇xt+1 ·Σt

∥∥∥ (7)
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Fig. 2. Results from our active sensing experiments with 4 different strategies: SL-D (blue) is our method, LG-H (green) and LG-D (red) are local
gradient variations of our method, and PMP (yellow) is a baseline. The red color on the tissue highlights the reference attachment, and the blue shows the
confidence, inverse of variance, of the estimated boundary. The dotted line in the boundary energy graph denotes the safety threshold. SL-D achieves more
entropy reduction than all other baselines while keeping a safe boundary energy profile. In comparison, local controllers LG-H and LG-D get trapped in
local minima, resulting in higher entropy. PMP results in quick safety violations. Additional active sensing results can be found in Fig. 7 of the appendix.

xt+1 = f
Ä
xref
t , ut, b̂t+1|t

ä
, ∆xt+1 = xt+1 − x0

∆̇xt+1 =

n∑
i

eie
⊤
i ⊗ [∆xt+1]i.

(8)

Here ei is the ith standard basis vector and ⊗ is the kronecker
product. This effectively maximizes information gain by
encouraging more displacement in regions that are more
uncertain as weighted by Σt. We prevent unsafe actions
by adding objectives to minimize the energy on the tissue’s
boundary constraints and limit the range of the actions.

Optimizing the above objectives for the best actions using
a local gradient based controller suffers from local minima
as well as vanishing gradient issues. Evaluating a multi-
step trajectory also imposes computational challenges. To
address these challenges we introduce a sampling-based large
step controller. We first uniformly sample several large-step
control actions. We refine these actions through gradient step
updates with respect to the optimization objectives. We then
select the action that best optimizes our objective before
taking a small step in its direction and re-planning. We
encourage smoothness by carrying over the top 10 samples
across each sampling iteration.

III. RESULTS AND EVALUATION

We evaluate our estimation method in simulation over 5
different environments. We repeat 4 grasp sequences on the 4
corners of the tissue while running our estimation framework.
We record the percentage of correct detections of attachment
points (PCD) and the percentage of the uncovered ground
truth (PUG). Table I summarizes our results with our method
performing the baseline of updating the boundary parame-
ters using gradient updates: "adam". The environments and
experiments are visualized in Fig. 5 and 6 in the appendix.

We also evaluate our estimation framework in a real world
experiment shown in Fig. 1 and Fig. 8 in the appendix. We
create boundary constraints by suturing chicken skin to a
chicken thigh. We are able to successfully recover the tissue’s
boundary constraints from endoscopic camera observations
of manipulating the tissue using tweezers. We compare the

TABLE II
REAL WORLD ESTIMATION RESULTS. THE NUMBER AFTER THE METRICS

CORRESPONDS TO THE DILATION FACTOR APPLIED.

PCD ➡ PCD-1 PCD-2 PUG ➡ PUG-1 PUG-2

Case1-BANet 0 0 0 0 0 0
Case1-Adam 46.2 84.6 84.6 54.5 100.0 100.0
Case1-Ours 47.4 84.2 89.5 81.8 100.0 100.0
Case1-Ours-σ=0.1 60 93.3 100 81.8 100.0 100.0

Case2-BANet 0 0 7.1 0 0 7.5
Case2-Adam 0.0 2.1 10.4 0.0 2.5 17.5
Case2-Ours 33.3 83.3 100.0 5.0 27.5 37.5

Case2-Ours-σ=0.1 40.0 100 100.0 11.1 55.6 72.2

PCD and PUG of our method, "adam" baseline and BANet
[19] in Table II. Visual comparisons can be found in Fig. 9

To evaluate active sensing, we compare four different
variants of our proposed framework:
1) LG-H: Local gradient-based action, minimizing entropy.

Only refines actions with local gradient based updates.
2) LG-D: Local gradient-based, maximizing displacement
3) SL-D: Our proposed method
4) PMP: Predefined motion primitives: An exhaustive

search to minimize entropy over motion primitives of
(±x,±y,±z). [15]

Our method, SL-D, consistently achieves greater entropy
reduction while keeping a safe boundary energy profile.
Results of this are shown in Fig. 2. Using motion model m,
our framework can also handle topological changes, and be
used to estimate the success of suturing or cutting. Examples
of these procedures are shown Fig. 4 and 3 in the appendix.

IV. CONCLUSION

In this paper we proposed a novel framework for active
sensing and boundary parameter estimation in deformable
surgical environments. We demonstrated the estimation ca-
pabilities of our method in both simulation and real world
experiments. Our active sensing experiments showcased our
method’s ability to manipulate the tissue to maximize infor-
mation gain while respecting safety constraints.
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V. APPENDIX

We show additional results of our method in the appendix.
Fig. 4 and Fig. 3 illustrate examples of our framework used
during topological changes like suturing and cutting respec-
tively. Fig. 5 and Fig. 6 show the simulation environments
used to evaluate our estimation framework as well as exam-
ples of our estimation experiments respectively. Additional
active sensing experiments across different environments are
shown in Fig. 7. All the estimation results from our real
world test cases are visualized in Fig. 8. Fig. 9 shows visual
comparison results between our method the baseline and
existing approaches. The corresponding quantitative results
for all these real world experiments are summarized in
Table III.
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top row shows the ground-truth boundary attachment in red, and the bottom row shows our estimation of the boundary in red and the confidence, inverse
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Fig. 4. We applied JIGGLE to a suturing procedure by 1) the left column:
applying the active sensing approach to find where the tissue is detached, 2)
the middle column: applying a suture action at the desired detached area, and
3) the right column: active sensing again to validate the suture action. The
top row of images shows the ground truth attachment in red, and the bottom
row shows our estimation of the boundary in red and the confidence, inverse
of variance, in blue. After each suture is applied, the suture information is
also fed into our estimation algorithm, including a noise injection near the
suture region, so the active sensing policy is encouraged to confirm where
the new boundary has been added. The second re-estimation, confirming the
boundary after the suture, reports an increase in PUG from 20.2 to 75.2.
The PCD value remains the same at 100, indicating no false detections.
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Fig. 5. The images show the ground truth attachment points in red using
spring boundary constraints for the simulation test cases in our experiments.
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Fig. 6. Example results from our estimation framework on simulated
environments where the order of the grasps is numbered, and the boundary
is highlighted in red on the left-most column. The final result from our
proposed method is shown in red in the middle column. Finally, the
confidence (inverse of variance) of our estimation is shown in blue in the
rightmost column. We can see how the variance has decreased in the regions
where the trajectories have displaced the tissue from its original state, and
the mean estimate has converged close to the reference values.
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Fig. 7. Results from our active sensing experiments with 4 different strategies: PMP (yellow) is a baseline, and SL-D (blue), LG-H (green), and LG-D
(red) are proposed in this work. Every two rows show one experiment with the entropy and energy plotted in the left-most column, and the images on the
right show a collage of the control trajectories being applied from the different active sensing strategies. Note that the colored background on each image
corresponds to the active sensing strategy (best viewed in color). The red color on the tissue highlights the reference attachment, and the blue shows the
confidence, inverse of variance, of the estimated boundary. The goal of the active sensing strategies is to maximize the confidence, which is measured
in entropy, while adhering to safety constraints, which are measured in energy. Overall, SL-D achieves more entropy reduction than all other baselines
while keeping a safe boundary energy profile. It also produces the most intricate control point trajectories, such as switching directions and folding. In
comparison, local controllers LG-H and LG-D get trapped in local minima, resulting in higher entropy. PMP reduces entropy in the beginning but results
in quick safety violations.



C
a
se

 3
M

e
a
n

V
a
ri

a
n
ce

Initial

C
a
se

 2
M

e
a
n

V
a
ri

a
n
ce

Intermediate Final
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tissue is deformed, the variance decreases, and the estimated mean of our
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proposed method and the Adam optimizer. In the second row, our method
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estimates predictions that are close to the true region (case 1) but fails
in other cases, producing many false positive estimations. Because BANet
cannot generalize to our real-world data, it fails to predict meaningful
results.



TABLE III
RESULTS FROM OUR REAL WORLD ESTIMATION EXPERIMENT. THE

NUMBER AFTER THE METRICS CORRESPONDS TO HOW MUCH DILATION

IS APPLIED WHEN COMPUTING THE METRIC.

PCD ➡ PCD-1 PCD-2 PUG ➡ PUG-1 PUG-2

Case1-BANet 0 0 0 0 0 0
Case1-Adam 46.2 84.6 84.6 54.5 100.0 100.0
Case1-Ours 47.4 84.2 89.5 81.8 100.0 100.0
Case1-Ours-σ=0.1 60 93.3 100 81.8 100.0 100.0

Case2-BANet 0 0 7.1 0 0 7.5
Case2-Adam 0.0 2.1 10.4 0.0 2.5 17.5
Case2-Ours 33.3 83.3 100.0 5.0 27.5 37.5

Case2-Ours-σ=0.1 40.0 100 100.0 11.1 55.6 72.2

Case3-BANet 8.0 20.0 32.0 4.2 14.5 22.5
Case3-Adam 45.2 61.3 67.7 42.4 81.8 97.0
Case3-Ours 44.5 72.2 88.9 24.2 78.8 100.0

Case3-Ours-σ=0.1 40.0 70.0 100.0 14.8 37.0 63.0


