
1

Multi-View Model-Based Visual Tracking of
Deformable Linear Objects

Alessio Caporali, Gianluca Palli

Abstract—This paper addresses the challenge of tracking the
state of DLOs during robotic manipulation, a key requirement
for achieving accurate and reliable control in industrial scenarios.
To this end, we propose a novel model-based multi-view visual
tracking algorithm. The algorithm integrates a predictive model
of DLO behavior based on the Cosserat rod formulation and
employs a neural network-based approximation to enable effi-
cient evaluation of DLO shapes. By guiding visual perception
with the predictive model, the algorithm effectively manages
occlusions and estimates the 3D shape of the manipulated DLO
in cluttered environments. This is accomplished by triangulating
simple 2D images, enabling seamless integration into existing
robotic systems without the need for costly and often unreliable
3D sensors. The proposed method is evaluated in a real-world
scenario, demonstrating its effectiveness in reliably tracking thin
DLOs in 3D environments.

Index Terms—deformable linear objects, visual tracking, multi-
view triangulation, robotic manipulation

I. INTRODUCTION

Deformable Linear Objects (DLOs), such as electrical ca-
bles, wires, and hoses, are long, flexible objects with circular
cross-sections [1]. Their manipulation is vital in industries like
automotive, aerospace, and switchgear assembly, where tasks
like routing wires are still largely manual, labor-intensive, and
error-prone [2], [3]. Automating DLO handling is challenging
due to their deformability, small size, and the need for precise
perception, tracking, occlusion handling, and shape control
during manipulation [2], [4], [5].

Recent research has introduced various methods to improve
robotic perception and manipulation of DLOs. Learning-based
models are favored for their real-time prediction capabilities
and efficiency over traditional analytical models [6], [7].
Perception techniques include deep segmentation networks [8],
stereo vision [9], and point cloud-based tracking [10]–[12],
often enhanced with learning algorithms [13], [14]. However,
these methods face limitations in real-world settings [3],
such as difficulty handling dynamic scenes, reliance on pre-
segmented data, poor occlusion handling, and lack of temporal
continuity in shape estimation. Most are tested in controlled
environments, limiting their practical applicability.

This work introduces a novel multi-view, model-based ap-
proach for visual tracking of DLOs during robotic manipula-
tion (Fig. 1). By using simple 2D images from multiple camera
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angles, the method triangulates and fuses data to estimate
the DLO’s 3D shape, offering advantages over traditional 3D
sensors [15]. It incorporates a fast neural network approxima-
tion of a Cosserat rod-based model to predict shape changes
online, guiding perception and handling occlusions effectively
in dynamic environments.

II. METHOD

A. DLO Model

The DLO model employed in this work is based on the
Cosserat rod theory, which describes the DLO as a thin, flex-
ible, and extensible rod [16]. While the Cosserat rod model is
accurate and realistic, it is computationally intensive, making
it unsuitable for online robotic applications. To overcome this,
a NN is trained for its approximation.

1) Analytical Cosserat Rod Model: A Cosserat rod is de-
scribed by its centerline s(z, t) (where z is the arc length of the
rod and t is time) and a material frame. Details of the model
and its governing equations are provided in [16]. The robot’s
manipulation actions are applied to the rod’s extremities. Each
extremity is associated with a pose vector, defined by the
vertex position s and the material frame Q. The action is
described as a displacement and a rotation applied to the
current poses of the extremities. The action set is represented
as A = {a1, an}, where a1 and an refer to the action on the
first and last DLO ends. Considering for reference the action
a1 ∈ R7, it is defined as a1 = [δx, δy, δz, qx, qy, qz, qw]

⊤,
where δx, δy and δz are the linear displacements applied to
vertex s1 and qx, qy , qz and qw are the quaternion components
representing the rotation applied to the material frame Q1. A
similar definition holds for an.

2) Neural Network Model: A NN approximates the
Cosserat rod model, offering a computationally efficient pre-
dictive model. To simplify the learning process, the DLO
state is reduced and represented as a sequence of 3D points,
each corresponding to a vertex si of the rod discretization
S = {s1, . . . sn}. The NN is trained to predict state changes
caused by a given action A.

The architecture of the NN (Fig. 2) is derived from [6]
with several modifications to accommodate the 3D nature of
the DLO state and the differences in action parameters. The
network consists of a series of linear layers, each followed by
a ReLU activation function. The network’s output, denoted as
S̃, represents the predicted changes in the 3D coordinates of
the DLO from the initial state. The final DLO state Spred is
then obtained by adding S̃ to Sin, i.e.:

Spred = DloPredictiveModel(Sin,A) = S̃ + Sin.
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Fig. 1: Overview of the proposed multi-view model-based tracking approach.
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Fig. 2: Neural network architecture.

Fig. 3: Dataset samples generated by the Cosserat rod model.

The network is trained to minimize the mean squared error
between the predicted Spred and the expected Sout final states.

The dataset is generated by simulating the analytical DLO
model subjected to a series of random actions, see Fig. 3.

B. Multi-View Visual Perception

The vision system employed in this work is based on two
2D cameras, a side-view and a top-view camera, which provide
images of the manipulated DLO from different perspectives.

1) 2D Shape Estimation: The 2D shape estimation is
performed independently for each camera. The process begins
with detecting the target manipulated DLO in the image,
utilizing a graph-based approach inspired from RT-DLO [17].
First, a semantic segmentation network is first employed to
remove the background from the image [8], Next, a specialized
pipeline is applied to extract the target DLO by leveraging an
initial guess based on the predicted DLO state Spred.

The pipeline consists of three key steps: 1) projecting Spred
onto each camera’s view obtaining Ppred, 2) generating a graph
representation of the DLO as observed in the scene [17], and
3) associating the nodes of the graph with Ppred.

The association process is illustrated in Fig. 4. It is per-
formed by matching the projected points pi with the nodes
vj of the graph. Importantly, the association is guided by the
predicted DLO state, such that erroneous or missing nodes do
not affect the matching process. Considering a point pi, the
process begins by identifying its closest edge (v1, v2) in the
graph. The point pi is then projected onto this edge, yielding

Fig. 4: Node association procedure.

a projected point p′i. The projection is computed as follows:

p′i = v1 +

(
(pi − v1) · (v2 − v1)

∥v2 − v1∥2

)
(v2 − v1)

This edge projection ensures a more accurate association
compared to using the closest vertex only. Indeed, the DLO is
expected to lie along the edges of the graph, and the number
and distribution of the vertices sampled with FPS may differ
significantly from Ppred.

By repeating this process for all points pi, the associ-
ation between Ppred and V is established. Simultaneously,
the segmentation mask Mb is used to assign a visible or
occluded attribute to each point pi in Ppred by evaluating the
corresponding pixel value of p′i in Mb.

For the occluded points, a reliable association is therefore
not possible, and the original predicted DLO state Spred is
used as a fallback. However, a gap (or step) is usually
introduced between the Ppred and the associated points, as
the predicted DLO state is not perfectly aligned with the
graph. To provide as output a smooth DLO state, the gap is
addressed by translating the occluded points over the expected
centerline of the occluded area. This translation is performed
by interpolating between the edge projection distances, i.e.
the distance between pi and p′i, of the associated points at the
extremity of the occluded areas. This approach ensures that
the vision system can handle occlusions effectively, as the NN
model provides an estimate of the DLO’s state in these cases.

Thus, the final output is a set of 2D points Pfinal representing
the DLO’s shape in the image.

2) Multi-view Triangulation: Triangulation is the process
of determining the 3D position of a point by intersecting the
rays passing through it from different points of view. In the
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Fig. 5: Example of tracking performance in real-world scenarios for different experiment trajectories and DLOs.

TABLE I: Average DTC error for real-world tracking across
DLOs and trajectories (values in percentage).

Exp Setup Red Rope Red Cable Blue Cable

Real Exp 1 0.217 0.217 0.234
Real Exp 2 0.200 0.187 0.203
Real Exp 3 0.213 0.172 0.231
Real Exp 4 0.317 0.324 0.379

context of the DLO, the 2D shapes obtained from the side-
view and top-view cameras are triangulated to reconstruct the
3D shape of the DLO.

Given a pixel point p in the 2D image plane of the camera,
the unit ray ν passing through the image reference frame origin
and p can be expressed in the camera frame as:

ν′ =

 px − cx
py − cy

f

 , ν =
ν′

∥ν′∥

where cx and cy are the pixel coordinates of the image center
and f is the camera focal distance.

The unit ray ν can be expressed in a reference world frame
by wν = wT cv where wT c is the transformation matrix from
the camera frame to the world frame.

Provided that m distinguished points of view are available,
the estimation p̃ of the unknown point p can be obtained by
looking for the point having the minimum distance from all
the rays. By defining the symmetric matrix Vi = I−wνi

wνTi ,
providing the semi-norm on the ray distance, the point location
estimate p̃ is provided by the nearest point search algorithm:

p̃ =

(
m∑
i=1

Vi

)−1( m∑
i=1

Vi
wtci

)
where wtci is the translation vector of the camera i in the

world frame, i = 1, . . . ,m.
This procedure is thus applied to each DLO node.

III. EXPERIMENTS

The experimental setup includes two UR5e robots with two-
fingered grippers (Robotiq Hand-E, 2F-85) and two static 2D
cameras (Luxonis OAK-1, 1920×1080 pixels) providing side
and top views. Both cameras are intrinsically and extrinsically
calibrated to the robot bases. ROS2 handles communication,
and the algorithm, implemented in Python 3.10 with PyTorch
2.0, runs on a workstation with an Intel Core i9-9900K CPU
(3.60 GHz) and an NVIDIA GTX 2080 Ti GPU.

The tracking algorithm’s performance is evaluated using: 1)
Occlusion Ratio, defined as the percentage of DLO state points
that are obscured in image space; 2) Distance-to-Centerline
(DTC), defined in the image space as the shortest distance
between the predicted projected state and the GT centerline in
image space (the error is normalized by the image width and
expressed as a percentage).

Three different real-world DLOs are used: red rope (length
0.53 m, diameter 6.0 mm); blue cable (length 0.60 m, diameter
4.8 mm); and red cable (length 0.52 m, diameter 3.6 mm).
The selection of these DLOs is based on their varying flexible
behaviors. The red rope and red cable share similar flexibility
characteristics but differ significantly in diameter and material.
The blue cable is included to test the tracking algorithm with
a stiffer DLO that exhibits pronounced plastic deformation.
Four distinct manipulation trajectories are used with the DLOs
undergoing varying motions and levels of occlusion.

A. Real-World Tracking Algorithm Results

Ground truth centerlines are obtained by manually anno-
tating DLO masks in each frame and extracting the visible
centerline through skeletonization. Tracking accuracy is then
quantitatively evaluated using the DTC metric.

Quantitative results of the real-world experiments are pro-
vided in Tab. I. The DTC error is computed for each ex-
periment, demonstrating the algorithm’s ability to track the
DLO state in real-world scenarios accurately. The tracking
performance remains consistent across the diverse set of test
DLOs and trajectories, with the average DTC error staying
below 1% in all cases. This is illustrated in the plots of
Fig. 5, which display the error progression during trajectory
execution for various combinations of DLO and manipulation
trajectory. The figure also includes snapshots of the various
trajectories and occlusion setups involved. Notably, the same
NN predictive model is employed across all test DLOs without
any DLO-specific fine-tuning.

IV. CONCLUSIONS

This paper introduces a new visual tracking method for
DLOs, combining a fast neural network-based predictive
model with a multi-view triangulation approach. The method
effectively tracks DLOs even under occlusions. Tested in real-
world experiments with various DLO types, the system runs
at 15 Hz, supporting real-time feedback. Future work aims
to improve the predictive model and extend the approach to
more complex manipulation and collision scenarios.
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