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Abstract— Accurate state estimation of deformable cables is
crucial in robotic perception, with significant applications in
industrial automation and surgical robotics. However, resolving
the state of multiple cluttered and tangled cable configurations
poses challenges due to occlusions, overlapping cables, and
ambiguous crossings. We introduce HANDLOOM 3.0, which
combines bidirectional cable tracing with novel interactive per-
ception primitives—Divergence Push and Cluster Dilation—to
actively resolve ambiguities caused by occlusions, crossings, and
dense cable arrangements. HANDLOOM 3.0 selects intervention
primitives based on uncertainty in state estimates. Extensive
evaluations on physical scenarios suggest that HANDLOOM
3.0 achieves on average 25.9% improvement in the percentage
of cables correctly traced over prior methods. Project website:
https://nidhya-s.github.io/handloom3.0/.

I . I N T R O D U C T I O N

The manipulation and perception of deformable linear
objects (DLOs) such as cables, hoses, and threads present
unique challenges due to their complex deformations, self-
occlusions, and entanglements. In industrial and assem-
bly settings, cluttered cables reduce safety and complicate
troubleshooting, requiring efficient organization and state
estimation.

Single-cable tracing methods that use geometric models
[1] and data-driven techniques [2] have shown promise.
HANDLOOM [3] introduced an RGB vision-based framework
that sequentially traces cables, but struggles in multi-cable
scenarios with overlaps and ambiguous crossings [4].

Interactive Perception (IP) addresses these ambiguities
by actively manipulating objects to reveal occluded states
[5]. The MANIP framework [4] and HANDLOOM 2.0 ex-
tended IP to multi-cable scenarios, improving tracing through
modular manipulation strategies. However, HANDLOOM
2.0 lacked global consistency analysis and relied on local
heuristics.

In this work, we propose HANDLOOM 3.0, a framework
for reconstructing multiple cable trajectories in cluttered
semi-planar environments. HANDLOOM 3.0 introduces bi-
directional tracing and targeted interactive perception primi-
tives to resolve ambiguities. Unlike prior methods, HAND-
LOOM 3.0 identifies intervention points from conflicting state
estimates and leverages both local and global geometry to
guide interventions.

Our contributions are:
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Fig. 1: Overview of the HANDLOOM 3.0 framework. Top: cluttered
scene with cables and objects. Bottom: three interactive perception primi-
tives—Object Decluttering, Divergence Push, and Cluster Dilation.

1) The HANDLOOM 3.0 framework for multi-cable tracing
with divergence point detection based on integrated state
estimates.

2) Two task-oriented IP primitives—Divergence Push and
Cluster Dilation—combining geometric cues and Hessian
filtering.

3) Real-world evaluation on 110 cluttered scenes, demon-
strating significant improvements over HANDLOOM
2.0.

I I . R E L AT E D W O R K

Early cable tracing approaches relied on analytical methods,
optimizing spline continuity [6–9], and visual feature tracking
[10, 11]. However, these methods often fail in real-world
settings with dense, occluded, or tangled cables due to strong
geometric assumptions. Learning-based methods have since
emerged, which use instance segmentation to predict cable
structures [10, 12]. RT-DLO [13] extracts skeletons from
semantic masks, while [14] uses iterative refinement. These
methods struggle with long cables and complex crossings.

HANDLOOM [3] introduced a learning-based, autoregres-
sive tracing framework using a UNet to predict trace points
from cropped image patches. Though effective in structured
scenes, HANDLOOM fails under heavy clutter, occlusions,
and high-density crossings typical of industrial environments.

https://nidhya-s.github.io/handloom3.0/


Fig. 2: Overview of the HANDLOOM 3.0 architecture. Occlusions trigger object removal. Divergence points are identified and classified
into tangential crossings or cable clusters, prompting IP actions.

Interactive Perception (IP) addresses such ambiguities by
actively manipulating the scene [5]. SGTM 2.0 [2] combined
analytical tracing with manipulation primitives to improve
accuracy. MANIP [4] extended this approach by integrating
HANDLOOM with manipulation policies, introducing multi-
cable interventions. HANDLOOM 2.0 demonstrated improved
tracing through local uncertainty-based interventions but
lacked mechanisms for global consistency.

This work advances prior efforts by handling denser scenes
with object occlusions and frequent crossings. We refine
intervention strategies through bi-directional tracing and
analysis of global and local geometry, improving robustness
in complex multi-cable configurations.

I I I . M E T H O D

We propose HANDLOOM 3.0, an interactive framework
for reconstructing multiple deformable cable trajectories in
cluttered semi-planar environments. The system iteratively re-
fines visual estimates using bi-directional tracing and targeted
robot interactions, addressing challenges from occlusions,
tangles, and ambiguous crossings (Figure 2).

A. Problem Formulation

Given an overhead RGB image It ∈ I, the goal is to
reconstruct the complete cable state Ĉt =

⋃n
i=1 Ĉi,t, where

each cable trajectory Ĉi,t preserves continuity and endpoint
connectivity. Each cable i follows a trajectory θi(s) = x(s)
for s ∈ [0, 1] in workspace W ⊂ R3. We assume (1) cables
are visually separable from a monochrome background, (2)
clutter objects are graspable, and (3) cable endpoints are fixed
in terminals.

Fig. 3: Cable Density & Cluster Dilation The cables are overlaid with a
density heatmap, where red indicates high local cable density. The central
(yellow) dot marks the divergence point classified as a cluster due to the
high-density region. The three dots below represent the centroids of candidate
open regions, with the center dot corresponding to the open region with the
largest pixel area selected for the Cluster Dilation action.

B. Pipeline Overview

As illustrated in Figure 2, HANDLOOM 3.0 first detects
cable endpoints using a trained Faster R-CNN model [15].
HANDLOOM tracing is initiated bi-directionally from each
endpoint, producing forward and backward trajectory esti-
mates. Divergence points are identified where traces fail to
connect or overlap incorrectly, signaling ambiguities.

When visual ambiguity is detected, the system applies
targeted interactive perception (IP) primitives: Object Declut-
tering, Divergence Push, or Cluster Dilation. Each primitive
is designed to reduce uncertainty by actively modifying
the workspace state Wt+1. This process iterates until the
reconstructed cable set Ĉ is topologically consistent.

C. Endpoint Detection and Cable Tracing

The endpoint detector outputs E(It) = {e1, e2, . . . , en},
where ei ∈ R2. Each endpoint initializes the HANDLOOM
tracer [3], which autoregressively predicts the next trace point
based on visual features. Tracing terminates upon reaching
another endpoint, forming loops, exceeding time limits, or
detecting occlusions.

D. Bi-Directional Tracing and Divergence Analysis

Each cable is traced in both directions. Divergence points
are detected when traces from opposing endpoints fail to con-
nect or overlap ambiguously. Divergence points are classified
based on local cable density ρ(di): clusters (ρ(di) ≥ τc) or
tangential crossings (ρ(di) < τc). This classification informs
subsequent IP actions.

Fig. 4: (Left) CDT and ridge lines. Divergence points (yellow) at crossings are
resolved with push actions along ridges. (Right) Divergence Push trajectory.

E. Interactive Perception Primitives

Object Decluttering: External objects obstructing pre-
dicted cable traces are identified using DETIC [16]. The
robot executes pick-and-place actions using oriented bounding
boxes, utilizing both arms for parallel removal.

Cluster Dilation: Clusters are addressed by identifying
nearby open regions in the Cable Distance Transform (CDT)



Fig. 5: Evaluation tiers. First row: initial cluttered scene; second row: initial traces; third row: completed traces after IP actions.

TABLE I: Tier System for Evaluation

Tier 1 Tier 2 Tier 3 Tier 4

# Cables 2 2 3 4
# Tangential Points 2 3 3-4 4-5
# Objects 3-4 3-4 3-4 3-4

Dc(p) = minq∈C ∥p−q∥. A controlled gripper opening action
is performed in the largest open region (Figure 3).

Divergence Push: For tangential crossings, CDT ridges
are extracted via Frangi vesselness filtering. Push actions
follow these ridges to physically separate ambiguous traces
(Figure 4).

I V. E X P E R I M E N T S

A. Setup
Experiments were conducted using the ABB YuMi robot

and overhead RGB camera setup shown in Figure 1. Up to
four white 6-foot USB-C cables and eight clutter objects
(blocks, zip ties, sockets, bags) were randomly arranged
(Appendix).

B. Evaluation Protocol
We evaluate HANDLOOM 3.0 across four tiers of increas-

ing complexity, based on cable count, tangential crossings,
and clutter (Table I). Figure 5 shows examples.

C. Multi-Cable Tracing Results
Table II reports trace completion success across 50 trials

without clutter. HANDLOOM 3.0 consistently outperforms
HANDLOOM 2.0, especially in higher tiers with dense
crossings.

TABLE II: Success rates (50 trials without clutter)

Method Tier 1 Tier 2 Tier 3 Tier 4

HANDLOOM 2.0 89.5% 86.2% 60.0% 68.2%
HANDLOOM 3.0 99.1% 91.2% 94.2% 89.4%
Improvement 10.7% 5.8% 56.9% 31.1%

D. Tracing with Clutter
We evaluated HANDLOOM 3.0 on 60 trials with object

interference (Table III). Despite clutter, the system maintained
high success rates, particularly in lower tiers.

TABLE III: Success rates (60 trials with clutter)

Method Tier 1 Tier 2 Tier 3 Tier 4

HANDLOOM 3.0 94.4% 91.4% 88.3% 82.9%

TABLE IV: Distribution of IP primitives

Primitive Tier 1 Tier 2 Tier 3 Tier 4

Total IP Actions 3.25 4.40 6.93 7.87
Decluttering (%) 42.9% 43.4% 20.6% 19.2%
Cluster Dilation (%) 6.3% 12.1% 15.9% 31.3%
Divergence Push (%) 50.8% 44.4% 63.5% 49.4%

E. Primitive Usage Analysis

Table IV summarizes IP primitive usage across tiers. As
scene complexity increases, Cluster Dilation actions become
more frequent, reflecting higher cable density.

V. L I M I TAT I O N S

HANDLOOM 3.0 inherits assumptions from HANDLOOM
2.0, requiring visually distinguishable cables in semi-planar
arrangements, with most of the segments visible from above.
Although HANDLOOM 3.0 adds interactive perception to
resolve occlusions, HANDLOOM 3.0 still depends on a con-
sistent cable appearance. Significant variations in thickness,
elasticity, or reflectance could degrade heatmap predictions.

A monocular overhead camera further limits depth per-
ception, making it difficult to distinguish closely spaced
cables that overlap in 2D. Although bidirectional tracing
and interactive perception mitigate this, scenes with many
thin cables stacked vertically remain challenging.

V I . F U T U R E W O R K

HANDLOOM 3.0’s underlying principles of visual track-
ing, bi-directional tracking, and active interventions have
potential for extension to broader challenges in manipulating
deformable objects. In particular, these techniques could
support cable routing tasks through the active planning and
repositioning of cables into desired, organized layouts.



A P P E N D I X

Fig. 6: Objects used to simulate occlusions in cluttered environments.
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